Anaerobic methane oxidation in low-organic content methane seep sediments
نویسندگان
چکیده
Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains <0.4 wt.% total organic carbon (OC) and primarily consists of glaciallyderived material that was deposited 14,900–15,900 yrs BP during the retreat of the late Quaternary Cordilleran Ice Sheet. We hypothesize this aged and exceptionally low-OC content sedimentary OM is biologically refractory, thereby limiting degradation of non-methane OM by sulfate reduction and maximizing methane consumption by sulfate-dependent AOM. A radiocarbon-based dissolved inorganic carbon (DIC) isotope mass balance model demonstrates that respired DIC in sediment pore fluids is derived from a fossil carbon source that is devoid of C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins. Published by Elsevier Ltd. 0016-7037/$ see front matter Published by Elsevier Ltd. http://dx.doi.org/10.1016/j.gca.2013.01.022 ⇑ Corresponding author. Tel.: +1 508 457 2213; fax: +1 508 457 2310. E-mail addresses: [email protected] (J.W. Pohlman), mriedel @nrcan.gc.ca (M. Riedel), [email protected] (J.E. Bauer), [email protected] (E.A. Canuel), [email protected] (C.K. Paull), [email protected] (L. Lapham), [email protected] (K.S. Grabowski), [email protected] (R.B. Coffin), gspence @uvic.ca (G.D. Spence).
منابع مشابه
Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps.
Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with (13)C-labeled methane showed co-occurring sulfate reduct...
متن کاملGrowth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor.
Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic met...
متن کاملArchaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone
Cold seeps in the Aleutian deep-sea trench support proli®c benthic communities and generate carbonate precipitates which are dependent on carbon dioxide delivered from anaerobic methane oxidation. This process is active in the anaerobic sediments at the sulfate reduction-methane production boundary and is probably performed by archaea working in syntrophic co-operation with sulfate-reducing bac...
متن کاملOn the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments--namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogeni...
متن کاملMethane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy
The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013